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Goal of Contextual Text Block Detection

• Contextual Text Block Detection[1] (CTBD) aims to detect contextual text blocks within 
natural scenes, which are aggregates of one or more integral text units, such as characters, 
words, or text-lines, arranged in their natural reading order.

[1] Xue, Chuhui, et al. "Contextual text block detection towards scene text understanding." European Conference on Computer Vision. 2022.



Challenges of Contextual Text Block Detection

Within Document Images Within Natural Scenes

• Diversity in text font styles and sizes
• Unclear spatial alignment among text units
• Background noises that obscure text

• Consistent font styles and sizes
• Clear spatial alignment
• Lack of background noises



Prior Arts

• Top-Down Methods
• Adopt box-regression based object detection frameworks to identify text blocks 

• E.g., R-CNN, Fast R-CNN, Faster R-CNN, YOLOv5, Deformable DETR, …
• Leverage instance segmentation frameworks to segment text blocks 

• E.g., Mask R-CNN, Mask2Former, SOLO, TransDLANet, Mask DINO, …
• Facing challenges in accurately detecting contextual text blocks in complex natural 

scenes and obtaining the reading order among the text units

• Bottom-Up Methods
• Detect the text units first, and then group them into text blocks arranged in their natural 

reading order
• E.g., Post-OCR Paragraph Recognition, Unified Line and Paragraph Detection, Hybrid POD, 

HierText, CUTE, …



CUTE[1]: An NLP Perspective

[1] Xue, Chuhui, et al. "Contextual text block detection towards scene text understanding." European Conference on Computer Vision. 2022.

• First to define the task of contextual text 
block detection

• Establish two benchmark datasets

• Frame it as a sequence modeling 
problem

• Inefficient prediction in vast index space

• Challenges in modeling more complex 
relationships

• Limited in leveraging broader visual 
features for CTBD



Post-OCR Paragraph Recognition[1]: 
Introduce Graph Structure into Paragraph Recognition

[1] Wang, Renshen, Yasuhisa Fujii, and Ashok C. Popat. "Post-ocr paragraph recognition by graph convolutional networks." Winter Conference on Applications of Computer Vision. 2022.

• Frame paragraph recognition as a 
relation prediction problem

• Leverage a GCN to model the 
relationships.

• Limit the capability to capture complex 
relationships due to the “static” graph 

• Focus remains primarily on physical 
paragraphs in printed text scenarios.



Core Idea of Our Approach:
Introduce Dynamic Graph Structure to CTBD

• Propose to frame contextual text block 
detection as a graph generation problem.

[1] Ma, Chixiang, et al. “DQ-DETR: Dynamic Queries Enhanced Detection Transformer for Arbitrary Shape Text Detection.” International Conference on Document Analysis and 
Recognition，2023.

• Introduce a dynamic graph structure 
refinement process to progressively 
improve the quality of generated graphs.

• Introduce a dual-interactive transformer 
decoder, Dynamic Relation Transformer 
(DRFormer), to support the iterative 
refinement process:
• Node Decoder generates high-quality 

edge proposals
• Edge Decoder facilitates relation-

aware self-attention and prunes 
incorrect edges



DRFormer: Dynamic Relation TransFormer
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Relation Prediction head

• Dynamic Graph Structure 
Refinement

• Relation Aware Self-
Attention

• Multi-Head Deformable 
Cross-Attention



Benchmark Datasets

• ReCTS-Context
• Includes a corpus of 15,000 training images and 5,000 test images.
• The majority of text units are characters, presenting a unique challenge in predicting 

reading order relationships.

• SCUT-CTW-Context 
• Contains a corpus of 940 training images and 498 test images. 
• The majority of text units are words, offering rich contextual information across various 

scenes.

The statistics of the ReCTS-Context and SCUT-CTW-Context datasets: 
‘integral’: Integral Text Units; ‘block’: Contextual Text Blocks; ‘#’: Number.



Evaluation Metrics

• Local Accuracy (LA)
• Evaluate the accuracy of order prediction for neighboring text units.

• Local Continuity (LC)
• Evaluate the continuity of text units by computing a modified 𝑛-gram precision score as 

inspired by BLEU, where 𝑛 varies from 1 to 5.

• Global Accuracy (GA)
• Evaluate the detection accuracy of complete contextual text blocks.

√
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Comparisons with Prior Arts

•  Performance comparison on SCUT-CTW-Context 

•  Performance comparison on ReCTS-Context

• Upper Bound Evaluation with GT Text Units



Effectiveness of Various Components

• Ablation studies on SCUT-CTW-Context dataset. 

• Key components:
• Dynamic Graph Structure Refinement (DGSR)
• Cross-Attention First (CAF)
• Relation-Aware Self-Attention (RASA)



Comparison Examples

Baseline:
Node Decoder 
only

DRFormer



Conclusion and Future Work

• Conclusion
• Framing contextual text block detection as a graph generation problem is 

an effective problem formulation for CTBD.
• DRFormer provides a promising avenue for integrating dynamic graph 

structures into the relation prediction process.

• Future work
• Integrate text embeddings to enhance relation prediction accuracy.
• Explore applying dynamic graph structure refinement to related tasks like 

Scene Graph Generation and Graph Structure Learning.
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